a2 United States Patent

US009239775B1

(10) Patent No.: US 9,239,775 B1

Corbesero 45) Date of Patent: Jan. 19, 2016
(54) COORDINATED TESTING (56) References Cited
(75) Inventor: Stephen Corbesero, Bethlehem, PA U.S. PATENT DOCUMENTS
Us) 5,671,351 A * 9/1997 Wildetal. ... 714/38.13
. 6,023,620 A 2/2000 Harisson
(73) Assignee: SYNCHRONOSS TECHNOLOGIES, 7,159,036 B2 1/2007 Hinchliffe et al.
INC., Bridgewater, NJ (US) 7,809,988 B1* 10/2010 Portaletal. 714/38.13
7,966,523 B2* 6/2011 Weatherhead 714/33
. . L . 8,010,095 B2 872011 Nat t al.
(*) Notice: Subject. to any dlsclalmer,. the term of this §.224308 Bl 72012 szsrl;rll;aioaet al.
patent is extended or adjusted under 35 8,433,953 BL* 42013 Gaudefte et al.cc.oo..... 714/33
U.S.C. 154(b) by 222 days. 2003/0120463 Al* 6/2003 Coxetal. 702/186
2005/0193258 ALl* 9/2005 Sutton ... 714/32
. 2006/0199599 Al 9/2006 Gupta et al.
(21) Appl. No.: 13/549,290 2008/0051071 Al 2/2008 Vishwanathan et al.
. 2009/0300587 Al* 12/2009 Zhengetal. 717/127
(22) Filed: Jul. 13, 2012 2012/0204155 Al* 82012 Ben-Artzietal. 717/125
* cited by examiner
Related U.S. Application Data Primary Examiner — Yolanda L. Wilson
(60) Provisional application No. 61/662,213, filed on Jun. (74) Attorney, Agent, or Firm — Haverstock & Owens LLP
20, 2012. (57) ABSTRACT
A single file is used to coordinate multiple testing processes.
(51) Int. CI. The single file is used to start a test, for other aspects of
GOG6F 11/00 (2006.01) testing, including, but not limited to, checking test prerequi-
GOG6F 11/36 (2006.01) sites before the run, the collection of load driver logs, the
(52) US.CL analysis of collected test data, and the generation of database
y g
CPC GO6F 113668 (2013.01); GO6F 113676 and other reports for the test run. The file is generated as a
(2013.01); GOGF 11/3684 (2013.01); GO6F script to set variables and then launch one or more load driver
1173692 (2013.01) instances on the local and/or network attached severs. The file
(58) Field of Classification Search is used by other programs and scripts as a “run description”

CPC GOGF 11/3688; GOGF 11/3684; GOGF
11/3692; GOGF 11/3676; GOGF 11/3696;

GOGF 11/34

USPC i 714/38.1

See application file for complete search history.

data file to check or control the viability of the test before
launch, the status of the test if the test is currently in progress,
collect the results of the test after finishing, and to begin the
analysis and report generation of the collected test results.

24 Claims, 3 Drawing Sheets

| Performing preparatory tasks for a test. |’\/ 100

'

| Performing a preparatory check. I’\/ 102

l

| Launching the test. |'\/ 104

'

| Analyzing the test. I’\/ 106

l

| Monitoring the test. |’\/ 108

'

| Finishing the test. |’\/ 110

l

| Performing post-test analysis. |’y, 112

U.S. Patent

Jan. 19, 2016 Sheet 1 of 3

Performing preparatory tasks for a test.

Y

Performing a preparatory check.

Y

Launching the test.

Y

Analyzing the test.

Y

Monitoring the test.

Y

Finishing the test.

Y

Performing post-test analysis.

Fig. 1

US 9,239,775 B1

100

102

104

106

108

110

112

U.S. Patent Jan. 19, 2016 Sheet 2 of 3 US 9,239,775 B1

200

N
202 204 206 208 220
Memory
Network Processor | [/O CT
Interface HW
Bus
£ 230
210 r~ ct T
Application

Storage

/

7~
212

Fig. 2

U.S. Patent Jan. 19, 2016 Sheet 3 of 3 US 9,239,775 B1

US 9,239,775 B1

1
COORDINATED TESTING

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims priority under 35 U.S.C. §119(e) of
the U.S. Provisional Patent Application Ser. No. 61/662,213,
filed Jun. 20, 2012 and titled, “COORDINATED TESTING”
which is also hereby incorporated by reference in its entirety
for all purposes.

FIELD OF THE INVENTION

The present invention relates to the field of product testing.
More specifically, the present invention relates to perfor-
mance and capacity testing.

BACKGROUND OF THE INVENTION

Performance testing is, in general, testing performed to
determine how a system performs in terms of responsiveness
and stability under a particular workload. Performance test-
ing is able to be used to investigate, measure, validate or
verify other quality attributes of a system, such as scalability,
reliability and resource usage. Performance testing includes
several types such as load testing, stress testing, endurance
testing, spike testing, configuration testing and isolation test-
ing.

SUMMARY OF THE INVENTION

A single file is used to coordinate multiple testing pro-
cesses. The single file is used to start a test, for other aspects
of'testing, including, but not limited to, checking test prereq-
uisites before the run, the collection of load driver logs, the
analysis of collected test data, and the generation of a data-
base and other reports for the test run.

The file is generated as a script (e.g., a shell script) to set
variables (e.g., shell variables) and then launch one or more
load driver instances on local and/or network attached severs.
The file is used by other programs and scripts as a “run
description” data file to check or control the viability of the
test before launch, the status of the test if the test is currently
in progress, collect the results ofthe test after finishing, and to
begin the analysis and report generation of the collected test
results.

By using a single run description file in the multiple phases
of'test execution, the chance of errors is greatly reduced. For
example, using the run description prior to the tests, it is
highly likely that the test will successfully start because the
load driver environment has the necessary properties includ-
ing pre-loaded test data and test-flow specific settings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a flowchart of a method of coordinated
testing according to some embodiments.

FIG. 2 illustrates a block diagram of an exemplary com-
puting device configured to implement the coordinated test-
ing method according to some embodiments.

FIG. 3 illustrates a diagram of an exemplary performance
test setup to implement the coordinated testing according to
some embodiments.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENT

To improve the quality of performance and capacity test-
ing, a single file is used to coordinate multiple testing pro-

10

15

20

25

30

35

40

45

50

55

60

65

2

cesses. The single file is used to start a test, during testing and
during analysis of the testing afterwards. For example, the
single file is able to be used in many parts of testing, includ-
ing, but not limited to, checking test prerequisites before the
run, the collection ofload driver logs, the analysis of collected
test data, and the generation of database and other reports for
the test run. In some embodiments, the file is generated as a
shell script to set shell variables and then launch one or more
load driver instances on the local and/or network attached
severs. The file is used by other programs and scripts as a “run
description” data file (e.g., a file that is able to read to provide
a description of the run-time operations) to check or control
the viability of the test before launch, the status of the test if
the test is currently in progress, collect the results of the test
after finishing, and to begin the analysis and report generation
of the collected test results.

As described above, the single file is used to coordinate
different aspects of the test process, including but not limited
to, ensuring that the correct load drivers are prepared and
loaded with the proper test data before a test is performed.
After atestis completed, the single file is used to retrieve data
from the load drivers used. Additionally, the single file that
was used to run the test is also able to inform the other testing
tools what data to collect and where to store the collected data.

In some embodiments, scripts such as shell scripts are used
to implement the coordinated testing. In some embodiments,
the scripts are contained in the single file, and in some
embodiments, the scripts are contained in multiple files. The
main script is referred to as “run script” which is used to
specify the testing flow, what happens on each one of the load
drivers and what block of data each load driver is using as well
as additional information.

To start a test a user runs the run script. Other scripts read
the run script; the scripts read the run script as if it were data
to be able to determine which load drivers are used in the test
(e.g., watch certain load drivers during the test) and grab data
from those load drivers. Before the test, the run script is able
to be used to check that the correct configuration files are
being used, the corrected data is mounted and other pre-test
parameters. An exemplary coordinated test script setup
includes a first shell script that launches a test and a second
shell script watches the test while running and uses the first
script to figure out what flows to monitor.

By using a single file, the user is able to verify and validate
data for the test, start the test, check the test and watch the test,
all from a single point, so that there is not a duplication of
configuration information.

Furthermore, to validate several different features, the
coordinated testing method is able to concurrently test the
features, as opposed to testing the features separately as was
performed previously.

In some embodiments, a script (e.g. the run script) is able to
control the test while the test is running. For example, the
script is able to control different aspects of the test to initiate,
pause, stop or modify the test in any manner. To supervise the
test, the script is configured in a way that allows the script to
interact with the test. For example, the script is configured to
send the appropriate data to the appropriate addresses of
varying devices.

The coordinated testing is able to monitor many aspects of
a test including, but not limited to, how long a test runs and
does the test have enough blocks of data to run. The coordi-
nated testing is also able to prepare a block of data for testing,
for example, in the run script the preparation steps are
described for a given flow, so that the script performs the
preparation work automatically.

US 9,239,775 B1

3

In some embodiments, the coordinated testing is integrated
with the design process of programming development. For
example, use cases are integrated with a test scheme, so that
several stages of testing are coordinated.

FIG. 1 illustrates a flowchart of a method of coordinated
testing according to some embodiments. In the step 100, a
script performs preparatory tasks for a test (e.g. determines if
new data blocks need to be loaded, and if so, load the data
blocks including generating new configuration files). In the
step 102, a verification script performs a preparatory check.
For example, the verification script analyzes a run script to
inform a user what will happen in the test and checks that the
correct data and configuration files are on the load drivers,
which is done on a per load driver basis. The verification
script also performs higher level checks (e.g., ensure the load
drivers are all running for a same amount of time, ensure the
blocks are not shorter than needed and other checks). When
the script determines the preparation is completed and the test
is ready to run, the test is launched, in the step 104. In some
embodiments, the script launches the test, and in some
embodiments, the test is launched independently ofthe script.
In some embodiments, additional steps are taken between the
verification step and the launch step. In the step 106, the run
script analyzes the test. For example, the run script indicates
the steps of the test as they start. The run script also enables
specific feature analysis. In the step 108, the run script or a
separate monitoring script monitors the test. For example, the
monitoring script monitors the load drivers and indicates
what the load drivers are doing (e.g., tasks sent, errors found
and more) to enable a user to determine if something is going
wrong. In some embodiments, an additional monitoring tool
is concurrently used with the monitoring script. In the step
110, the test finishes. In the step 112, post-test analysis is
performed. For example, the run script or one or more addi-
tional scripts are run to collect data and integrate the data with
one or more reports. In some embodiments, more or fewer
steps are implemented. For example, the software to be tested
is installed before running the script. In another example, the
run script or other scripts are modified specifically for the test.
Inyet another example, if a test fails, then post test analysis is
not performed. Additionally, the timing of the steps is able to
be such that the steps occur within seconds (or less), minutes,
hours or days of each other. In some embodiments, the order
of'the steps is modified. Any of the steps described herein are
able to be performed automatically or manually.

FIG. 2 illustrates a block diagram of an exemplary com-
puting device configured to implement the coordinated test-
ing method according to some embodiments. The computing
device 200 is able to be used to acquire, store, compute,
process, communicate and/or display information. For
example, a computing device 200 is able to be used for load
testing. In general, a hardware structure suitable for imple-
menting the computing device 200 includes a network inter-
face 202, a memory 204, a processor 206, 1/O device(s) 208,
abus 210 and a storage device 212. The choice of processor is
not critical as long as a suitable processor with sufficient
speed is chosen. The memory 204 is able to be any conven-
tional computer memory known in the art. The storage device
212 is able to include a hard drive, CDROM, CDRW, DVD,
DVDRW, Blu-Ray®, flash memory card or any other storage
device. The computing device 200 is able to include one or
more network interfaces 202. An example of a network inter-
face includes a network card connected to an Ethernet or other
type of LAN. The /O device(s) 208 are able to include one or
more of the following: keyboard, mouse, monitor, display,
printer, modem, touchscreen, button interface and other
devices. In some embodiments, the hardware structure

10

15

20

25

30

35

40

45

50

55

60

65

4

includes multiple processors and other hardware to perform
parallel processing. Coordinated testing application(s) 230
used to perform coordinated testing method are likely to be
stored in the storage device 212 and memory 204 and pro-
cessed as applications are typically processed. More or fewer
components shown in FIG. 2 are able to be included in the
computing device 200. In some embodiments, coordinated
testing hardware 220 is included. Although the computing
device 200 in FIG. 2 includes applications 230 and hardware
220 for implementing the coordinated testing method, the
coordinated testing method is able to be implemented on a
computing device in hardware, firmware, software or any
combination thereof. For example, in some embodiments, the
coordinated testing applications 230 are programmed in a
memory and executed using a processor. In another example,
in some embodiments, the coordinated testing hardware 220
is programmed hardware logic including gates specifically
designed to implement the method.

In some embodiments, the coordinated testing application
(s) 230 include several applications and/or modules. In some
embodiments, modules include one or more sub-modules as
well.

Examples of suitable computing devices include a personal
computer, a laptop computer, a computer workstation, a
server, a mainframe computer, a handheld computer, a per-
sonal digital assistant, a cellular/mobile telephone (e.g. an
iPhone®), a smart appliance, a tablet computer (e.g. an
iPad®) or any other suitable computing device.

FIG. 3 illustrates a diagram of an exemplary performance
test setup to implement the coordinated testing according to
some embodiments. The exemplary test setup 300 includes a
controller 302, load generators 304, a load balancer 306, web
servers 308, application servers 310 and a database servers
312. The controller 302 launches the load test. The controller
302 also runs the run script as described herein, for example,
the run script analyzes and monitors the load drivers. Addi-
tional scripts are run on the controller 302 or other devices
depending on the implementation of the script. The load
generators 304 simulate loads such as users accessing a web-
site. The load balancer 306 distributes the load to the web
servers 308. The web servers 308 perform web serving duties
which involves accessing data from the application servers
310. The application servers 310 serve the applications which
access data from the database server 312. Other processes and
tasks are performed by the respective devices as desired or
needed. In some embodiments, fewer or additional devices
are utilized.

To utilize the coordinated testing method, a user runs a
single script or multiple scripts which are able to analyze test
conditions, including pre-test, test and post-test conditions.
By using the coordinated testing method, the user is able to
prepare a test procedure and detect errors more effectively.

In operation, coordinated testing helps to prevent a test
malfunctioning mid-test due to a improper test configuration
or other errors. By using a single run description file in the
multiple phases of test execution, the chance of errors is
greatly reduced.

The present invention has been described in terms of spe-
cific embodiments incorporating details to facilitate the
understanding of principles of construction and operation of
the invention. Such reference herein to specific embodiments
and details thereof is not intended to limit the scope of the
claims appended hereto. It will be readily apparent to one
skilled in the art that other various modifications may be made
in the embodiment chosen for illustration without departing
from the spirit and scope of the invention as defined by the
claims.

US 9,239,775 B1

5

What is claimed is:

1. A method of implementing coordinated testing pro-
grammed in a memory of a device comprising:

a. checking pre-test values before initiating a test;

b. initiating the test with a single run script including
launching one or more load drivers on one or more
network attached servers;

¢. monitoring test values with a monitoring script during
the test, wherein monitoring includes retrieving data
from the one or more load drivers; and

d. analyzing test results from the test, wherein checking,
initiating, monitoring and analyzing are performed in
cooperation with the single run script, wherein the moni-
toring script reads the single run script as if the run script
were a data file in order to determine which of the one or
more load drivers to monitor and from which of the one
or more load drivers to retrieve the data.

2. The method of claim 1 wherein checking pre-test values
comprises checking pre-loaded test data and test-flow spe-
cific settings.

3. The method of claim 1 wherein checking the pre-test
values comprises checking for correct configuration files and
mounted data.

4. The method of claim 1 wherein monitoring the test
values includes monitoring a test run length, analyzing spe-
cific features being tested and monitoring load drivers.

5. The method of claim 1 wherein analyzing the test results
comprises collecting load driver logs and analyzing the logs.

6. The method of claim 1 wherein analyzing the test results
comprises generating a database and a report based on the test
results.

7. The method of claim 1 wherein the single script is used
by one or more additional scripts as a run description data file
to specity a testing flow, load driver function information and
load driver block information.

8. The method of claim 1 wherein the single script informs
one or more additional tools what data to collect and where to
store the collected data.

9. The method of claim 1 wherein the single script performs
supervisory tasks including controlling aspects of the test.

10. The method of claim 1 wherein the test is integrated
with a design process of program development.

11. The method of claim 1 further comprising collecting
data and integrating the data in a report.

12. A method of implementing coordinated testing pro-
grammed in a memory of a device comprising:

a. performing a pre-test analysis using a verification script;

b. launching a test using a run script, wherein the test
includes launching one or more load drivers on one or
more network attached servers;

c. monitoring the test using a monitoring script; and

d. performing post-processing analysis using an analysis
script, wherein the verification script, the monitoring
script and the analysis script are each configured to read
the run script as if the run script were a data file in order
to perform the performing, monitoring and analysis.

10

15

20

25

30

35

40

45

50

55

6

13. The method of claim 12 wherein the run script performs
preparatory tasks for the test.

14. The method of claim 12 wherein the verification script
uses the run script to inform a user of a test process and checks
that correct data and configuration files are on load drivers.

15. The method of claim 12 wherein the run script further
indicates steps of a test as each step starts.

16. The method of claim 12 wherein the monitoring script
monitors load drivers and indicates what the load drivers are
doing during the test.

17. The method of claim 12 wherein the analysis script
collects data and integrates the data in a report.

18. The method of claim 12 wherein the run script performs
supervisory tasks including controlling aspects of the test.

19. The method of claim 12 wherein the test is integrated
with a design process of program development.

20. An apparatus comprising:

a. a non-transitory memory for storing an application, the

application for automatically:

i. performing preparatory tasks for a test using a run
script including loading data blocks and generating
configuration files;

ii. performing a preparatory check of test parameters
using a verification script including checking that the
data blocks and the configuration files are correct;

iii. launching the test using the run script;

iv. analyzing the test using the run script including indi-
cating steps of the test as the steps start;

v. monitoring the test using a monitoring script including
monitoring load drivers and indicating what the load
drivers are doing; and

vi. performing post-test analysis using an analysis script
including collecting test results and integrating the
test results in a report, wherein the verification script,
the monitoring script and the analysis script are each
configured to read the run script as if the run script
were a data file in order to provide a description of
run-time operations to check viability of the test
before launch, check the status of the test if the test is
currently in progress, collect the test results of the test,
and begin analysis and report generation of the col-
lected test results; and

b. a processing component coupled to the memory, the

processing component configured for processing the

application.

21. The apparatus of claim 20 wherein the verification
script uses the run script to inform a user of a test process.

22. The apparatus of claim 20 wherein the verification
script, the monitoring script and the analysis script utilize the
run script as a run description data file.

23. The apparatus of claim 20 wherein the run script per-
forms supervisory tasks including controlling aspects of the
test.

24. The apparatus of claim 20 wherein the test is integrated
with a design process of program development.

#* #* #* #* #*

